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The Basic DiD Design: Identifying the DiD effect 
Let 𝐷!,# = 1 if group 𝑔 is exposed to the policy in period 𝑡 (the treated group), and 𝐷!,# =
0 if group 𝑔 is not exposed to the policy in period 𝑡 (the comparison group). To 
understand the effects of California’s PFL policy compared with a comparator state, say 
Nevada, we can define potential outcomes by group. Let 𝑌!,#(0) be the potential 
outcome if group 𝑔 were not exposed to the policy at time 𝑡, and 𝑌!,#(1)  be the potential 
outcome if the same group were exposed to the policy at time 𝑡.  
 To identify the DiD effect 𝛿$%$, we adopt three key assumptions. First, we adopt a 
consistency assumption, whereby a group’s potential outcomes correspond to the one 
from its observed treatment status: 𝑌 = (1 − 𝐷) ∙ 𝑌(0) + 𝐷 ∙ 𝑌(1). For example, if a 
Californian is exposed to the PFL policy, their observed outcome is the potential 
outcome of someone who was treated: 𝑌 = 𝑌(1), and their potential outcome 𝑌(0) is 
unobserved. Similarly, if a Nevadan is unexposed to the PFL policy, their observed 
outcome is the potential outcome of someone who was not treated: 𝑌 = 𝑌(0), and their 
outcome 𝑌(1) is unobserved. Second, we adopt the parallel trends assumption that the 
change in outcomes in the comparator group is a good counterfactual for the untreated 
potential outcomes in the treated group: Ε/𝑌&'(#(0) − 𝑌&)*(0)|𝐷 = 11 = Ε/𝑌&'(#(0) −
𝑌&)*(0)|𝐷 = 01. Third, we adopt a no-anticipation assumption, stating that the treatment 
has no effect prior to its implementation. Formally, we can write this assumption as:  
𝑌&)*(0) = 𝑌&)*(1) for all 𝑔 with 𝐷! = 1. 
 Our target estimand is the average treatment effect on the treated (ATT), defined 
for DiD as: 𝐴𝑇𝑇 ≡ Ε/𝑌&'(#(1) − 𝑌&'(#(0)|𝐷 = 11. In our example, this is the post-policy 
difference in health outcomes in California with a PFL law versus without a PFL law. 
Applying the assumptions of parallel trends and no-anticipation, one can estimate the 
DiD effect:  
 

𝐴𝑇𝑇 ≡ Ε/𝑌&'(#(1) − 𝑌&'(#(0)|𝐷 = 11             (1) 
= Ε/𝑌&'(#|𝐷 = 11 − Ε/𝑌&)*|𝐷 = 11566666666676666666668

+,-.+/01	34567-	86	1,-51-9	7,/:+

− Ε/𝑌&'(#|𝐷 = 01 − Ε/𝑌&)*|𝐷 = 01566666666676666666668.							
+,-.+/01	34567-	86	3/;+5,51/,	7,/:+

 

= 𝛿;$%$								             
 
We can see that the ATT is the double-difference of the pre-post change in outcomes in 
the treated group and the pre-post change in outcomes in the comparator group. In this 
basic setup, one can simply estimate the crude DiD effect by plugging in the sample 
averages: 𝛿;$%$ = <𝑌=#)*<#,&'(# − 𝑌=#)*<#,&)*> − <𝑌=='>&,&'(# − 𝑌=='>&,&)*>. eFigure 1 provides a 
graphical illustration. 
 
 



Forbidden comparisons 
The following derivation shows how TWFE produced biased DiD estimates because of 
“forbidden comparisons”. 
 
Goodman-Bacon (2021) illustrates that the problem of negative weights often originate 
from “forbidden comparisons” between a group treated in a later period (late-treated) 
and a group treated in an earlier period (early-treated).1 The weighted average of 2×2 
DiDs that comprises TWFE includes “clean” comparisons between treated and not-yet-
treated groups, as well as “forbidden comparisons” that generate bias.     
 
Consider a simple example of PFL policies. We have three waves of data—2000 
(Period 1), 2005 (Period 2), and 2010 (Period 3)—and two groups—California as the 
early-treated (PFL in 2004) and New Jersey as the late-treated (PFL in 2009). In Period 
1, both states are untreated. In Period 2, California switches to treated, and in Period 3, 
New Jersey switches to treated. The ATT is a weighted sum of the effect of California’s 
law (𝛿*<)?@,A) and the effect of New Jersey’s law (𝛿?<#*,B): 
  

ATT = Ε[𝛿] = 	 C
A
𝛿*<)?@,A +	

C
A
𝛿?<#*,B         (2) 

with 
𝛿;*<)?@,A = 𝑌*<)?@,A − 𝑌*<)?@,C − (𝑌?<#*,A − 𝑌?<#*,C) 
𝛿;?<#*,B = 𝑌?<#*,B − 𝑌?<#*,A − (𝑌*<)?@,B − 𝑌*<)?@,A) 

 
For the treatment effect in early-treated group (i.e., individuals living in California) 

in period 2, i.e., 𝜏*<)?@,A, under the parallel trends assumption, both groups would have 
experienced the same outcome evolution without the treatment, i.e., 𝑌*<)?@,A(0) −
𝑌*<)?@,C(0) = 𝑌?<#*,A(0) − 𝑌?<#*,C(0), we have 
 

𝛿;*<)?@,A = 𝑌*<)?@,A − 𝑌*<)?@,C − (𝑌?<#*,A − 𝑌?<#*,C) 
                 = 𝑌*<)?@,A(1) −	𝑌*<)?@,C(0) − (𝑌?<#*,A(0) − 𝑌?<#*,C(0)) 
                = 𝑌*<)?@,A(1) −	𝑌*<)?@,A(0)  

                = 𝜏*<)?@,A        (3) 
 
Hence, 𝛿;*<)?@,A is unbiased for the treatment effect in the early-treated group. 

This is similar to what has been discussed in the aforementioned basic 2x2 DiD design. 
When estimating the treatment effect in the late-treated group (i.e., individual 

living in New Jersey) in period 3, i.e., 𝛿?<#*,B, we have 
 

𝑌*<)?@,B − 𝑌*<)?@,A = (𝑌*<)?@,B(0) + 𝜏*<)?@,B) − (𝑌*<)?@,A(0) + 𝜏*<)?@,A) 
        𝑌?<#*,B − 𝑌?<#*,A = (𝑌?<#*,B(0) + 𝜏?<#*,B) − 𝑌?<#*,A(0) 
 

Under the parallel trends assumption, i.e., 𝑌*<)?@,B(0) − 𝑌*<)?@,A(0) = 𝑌?<#*,B(0) −
𝑌?<#*,A(0), we have 
 

𝛿;?<#*,B = 𝑌?<#*,B − 𝑌?<#*,A − (𝑌*<)?@,B − 𝑌*<)?@,A) 



                  = 𝜏?<#*,B − 𝜏*<)?@,B + 𝜏*<)?@,A     (4) 
 

Combining (2), (3), and (4), we have 
 

𝐸[𝛿] = C
A
𝜏?<#*,B +	𝜏*<)?@,A −

C
A
𝜏*<)?@,B     (5) 
 

 As can be seen in Eq.(5), 𝐸[𝛿] is a weighted sum of three treatment effects, 
where one treatment effect (i.e., 𝜏*<)?@,B) receives a negative weight. This comes from 
the term 𝛿;?<#*,B, which compares a late-treated group to an early-treated group, e.g., 
comparing individuals in New Jersey to individuals in California after California has been 
treated. If the treatment effect for the early-treated group does not change over time, 
i.e., 𝜏*<)?@,A = 𝜏*<)?@,B, then (5) simplifies to C

A
𝜏?<#*,B +	

C
A
𝜏*<)?@,A. Hence, 𝐸[𝛿] estimates 

the average of treatment effects on the treated (ATT). However, if the treatment effect 
changes over time, negative weights may occur and 𝐸[𝛿] will be biased.  
 
Similar issues for event-study designs under heterogeneous treatment effects 
 
Sun and Abraham (2021) show that, in a staggered treatment setting, forbidden 
comparisons will contaminate the coefficients on leads and lags due to the negative 
weighting problem in the presence of heterogenous dynamic treatment effects.2 This 
can lead to inaccurate estimation of policy effects and unreliable testing results of the 
parallel trends assumption. Only when the evolution of the policy effects is identical 
across groups (e.g., between California and New Jersey) will the estimated coefficients 
for the leads or lags be unbiased.2 Callaway and Sant’Anna (2022) use a Monte Carlo 
simulation to illustrate how estimated coefficients for leads and lags using TWFE 
methods differ from the true effects in the presence of heterogenous treatment effects.3  
 
The overall ATT 
 
As mentioned in the main manuscript, there are several ways to summarize ATT!,#’s into 
an overall ATT. This includes averaging all group-time ATTs, group ATTs, event-time 
ATTs, or cohort ATTs.4 Determining the most appropriate method for summarizing an 
overall ATT requires careful consideration. A simple average of all ATT!,#’s will put more 
weight on groups that undergo treatment for longer periods. Alternatively, averaging 
group ATTs, where group ATTs equal the mean of ATT!,#’s across all post-treatment 
time periods within each group, provides an interpretation akin to the ATT in a standard 
2×2 DiD design, i.e., the overall effect of being in the treatment group.  

On the other hand, averaging event times or cohort ATTs, where event times or 
cohort ATTs are the mean of ATT!,#’s for each event time or cohort, may introduce 
complexities in interpretating of the overall ATT, especially when the sample is 
unbalanced and potential changes in group composition across different time periods. 
Using a balanced panel with respect to the event time may alleviate this concern. These 
nuances were thoroughly discussed in Callaway and Sant’Anna (2021) and Goin and 
Riddell (2023).4, 5 
 



 
Adjusting covariates in the DiD designs 
 
Zeldow and Hatfield (2021) extensively discussed time-varying confounders in the basic 
2x2 DiD regression. They show that, depending on the confounding scenario, 
regressions that adjust for covariates with constant effects (i.e., by controlling for 
covariates themselves) or time-varying effects (e.g., by controlling for the interaction 
term between covariates and time) usually yield more robust DiD estimators. This is the 
conventional approach adopted by researchers using the basic DiD design, i.e., 
estimating a version of Eq. (1) in the main manuscript that adjusts for covariates 
potentially affecting the treated and comparator groups differently.  

Likewise, for staggered policy implementation using TWFE regressions, 
researchers often estimate a version of Eq. (2) in the main manuscript that adjusts for 
all observable time-varying covariates. Time-invariant covariates are omitted as they are 
absorbed by the group fixed effects. However, as highlighted in recent econometrics 
literature,6 there are several limitations besides the “bad control” problem:  

First, TWFE regressions incorporating time-varying covariates do not condition 
the PTA on time-invariant covariates. If time-invariant covariates have time-varying 
effects on the outcome, failing to account for them may violate the PTA and generate 
bias.  

Second, TWFE regressions only effectively control for changes in time-varying 
covariates over time, but not their levels. Hence, TWFE regressions only compares 
treated units and untreated units with same changes in covariate values, rather than 
comparing units with similar covariate levels. If the trajectories of untreated potential 
outcomes also depend on the level of the covariates, TWFE regressions may perform 
poorly. For example, in examining the effect of the PFL law, a TWFE regression only 
compares California (a treated state) to an untreated state with equivalent population 
change. However, if changes in health outcomes within a state depends on its 
population level (e.g., smaller in a treated state with a larger population), failing to 
consider this may result in bias.  

One approach to address the first issue is to include an interaction term between 
the time-invariant covariate and time to control for time-varying confounders. For the 
second issue, some procedures can be employed to match each treated unit with a 
comparator unit with similar or identical covariate values. Recent heterogeneity-robust 
DiD approaches can perform these adjustments. For example, Callaway and Sant’Anna 
(2021) allows using regression adjustment, inverse probability weighting (IPW), and 
doubly-robust estimators (DR) for matching. Wooldridge (2021) allows using regression 
adjustment. It is worth noting that this approach will include all potential interactions 
among groups, time, and covariates, which may result in an extremely large number of 
estimated coefficients, increasing the challenges for model estimation. In Borusyak, 
Jaravel, and Spiess (2021), covariates can be incorporated in the first step regression 
that imputes counterfactual outcome for treated units using control units. 
 
Honest DiD  
 



Rambachan and Roth (2023) propose an approach to provide robust inference and 
sensitivity analysis under PTA violations.7 Intuitively, they impose restrictions that bound 
the extent of post-treatment violations of parallel trends to be a constant 𝑀G  times the 
pre-treatment differences in trends. Then they propose conducting sensitivity analysis 
that accesses the robustness of treatment effect across a range of 𝑀G. Specifically, the 
sensitivity results can show a set of confidence intervals of ATTs across different 𝑀G, 
and conclude whether there is significant treatment effect when allowing for post-
treatment differences in trends up to 𝑀G times the difference in pre-treatment trends. 
Currently, this procedure can be integrated with the Callaway and Sant’Anna (2021) 
estimator in R (command: HonestDiD) and Stata (command: honestdid). 
 
Simulation study: Data generating process (DGP) 
 
We created 500 datasets, each comprising 30 units and 36 time periods for each unit. 
We divided these units to 6 cohorts that receive treatment at different times (“staggered” 
design). The DGP includes the following base model: 

𝑌%# = 𝛽𝐷%# + 𝜇% + 𝛾# + 𝑒%# 
where 𝑌%# is the outcome of interest in unit 𝑖 at time 𝑡, 𝜇% is the unit fixed effect, 𝛾# is the 
time fixed effect, and 𝑒%# is the error term. 𝜇%, 𝛾# , and 𝑒%# follow a normal distribution. 𝐷%# 
is the treatment indicator (1 in treated unit-time, and 0 otherwise), and 𝛽 is the treatment 
effect, which was set based on scenarios: 

§ Across units, 𝛽 can either be homogeneous (a random number between 2 and 
10, same across units), random (each unit can have a random number between 
2 and 10), or larger for those treated earlier (the first treated unit was assigned a 
random number between 6 and 10, the second treated unit was then assigned a 
number equal the effect of the first-treated unit minus 1, and so on) 

§ Across time, 𝛽 is either constant, or increases linearly over time, i.e., 𝛽 ∙
(𝑡 − 𝑓𝑖𝑟𝑠𝑡#)*<# + 1)/36	if 𝐷%# = 1, where 𝑓𝑖𝑟𝑠𝑡_𝑡𝑟𝑒𝑎𝑡 is the initial treatment timing. 

The base model does not allow for time-varying confounders, and thus no PTA 
violations. In scenarios with PTA violations, we also include a covariate with time-
varying effects: 

𝑌%# = 𝛽𝐷%# + 𝜆#𝑋% + 𝜇% + 𝛾# + 𝑒%# 
 
where 𝑋% follows a normal distribution. We allow the time-varying effect 𝜆# to be smaller 
among early treated units.  

In sensitivity analyses, we increase the number of units from 30 to 50 (eFigures 
2-3, eTable 1), the number of time periods from 36 to 60 (eFigures 4-5, eTable 2), and 
the number of simulation runs from 500 to 1000 (eFigures 6-7, eTable 3). The results 
from all of these sensitivity analyses were consistent with those from the base model. 
 
 
 



 
eFigure 1. The basic difference-in-differences design 

 
Note: Each dot represents a hypothetical data point from an individual living in California (light blue) 
or Nevada (light orange). The blue dotted line (counterfactual treated group) denotes what would 
have happened to the treated group (California) in the absence of treatment. 
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eFigure 2. Monte Carlo simulation results for Scenarios 1 and 2 increasing the number 
of units to 50 
 

 
 
Abbreviations: TWFE: Two-way fixed effects; CS: Callaway-Sant’Anna; BJS: Borusyak-Jaravel-
Spiess; SA: Sun-Abraham; JW: Wooldridge 
Note: Scenarios 1a-1c have constant effects, and Scenarios 2a-2c have dynamic (linear trend) 
effects. Scenarios 1a and 2a have homogeneous effects across groups; Scenarios 1b and 2b have 
heterogeneous (at random) effects across groups; and Scenarios 1c and 2c have heterogeneous 
(large first) effects across groups. Each scenario is listed in Table 4 in the main article.  
 
 



eFigure 3. Monte Carlo simulation results for Scenario 3 increasing the number of units 
to 50 
 

 
 
Abbreviations: TWFE: Two-way fixed effects; CS: Callaway-Sant’Anna; BJS: Borusyak-Jaravel-
Spiess; SA: Sun-Abraham; JW: Wooldridge 
Note: Scenarios 3a-3c have constant effects, and Scenarios 3d-3e have dynamic (linear trend) 
effects. Scenarios 3a and 3d have homogeneous effects across groups; Scenarios 3b and 3e have 
heterogeneous (at random) effects across groups; and Scenarios 3c and 3f have heterogeneous 
(large first) effects across groups. Each scenario is listed in Table 4 in the main article.  
 
 
 



eFigure 4. Monte Carlo simulation results for Scenarios 1 and 2 increasing the number 
of time periods to 60 
 

 
 
Abbreviations: TWFE: Two-way fixed effects; CS: Callaway-Sant’Anna; BJS: Borusyak-Jaravel-
Spiess; SA: Sun-Abraham; JW: Wooldridge 
Note: Scenarios 1a-1c have constant effects, and Scenarios 2a-2c have dynamic (linear trend) 
effects. Scenarios 1a and 2a have homogeneous effects across groups; Scenarios 1b and 2b have 
heterogeneous (at random) effects across groups; and Scenarios 1c and 2c have heterogeneous 
(large first) effects across groups. Each scenario is listed in Table 4 in the main article.  
 
 



eFigure 5. Monte Carlo simulation results for Scenario 3 increasing the number of time 
periods to 60 
 

 
 
Abbreviations: TWFE: Two-way fixed effects; CS: Callaway-Sant’Anna; BJS: Borusyak-Jaravel-
Spiess; SA: Sun-Abraham; JW: Wooldridge 
Note: Scenarios 3a-3c have constant effects, and Scenarios 3d-3e have dynamic (linear trend) 
effects. Scenarios 3a and 3d have homogeneous effects across groups; Scenarios 3b and 3e have 
heterogeneous (at random) effects across groups; and Scenarios 3c and 3f have heterogeneous 
(large first) effects across groups. Each scenario is listed in Table 4 in the main article.  
 
 
 



eFigure 6. Monte Carlo simulation results for Scenarios 1 and 2 increasing the number 
of simulation runs to 1000 
 

 
 
Abbreviations: TWFE: Two-way fixed effects; CS: Callaway-Sant’Anna; BJS: Borusyak-Jaravel-
Spiess; SA: Sun-Abraham; JW: Wooldridge 
Note: Scenarios 1a-1c have constant effects, and Scenarios 2a-2c have dynamic (linear trend) 
effects. Scenarios 1a and 2a have homogeneous effects across groups; Scenarios 1b and 2b have 
heterogeneous (at random) effects across groups; and Scenarios 1c and 2c have heterogeneous 
(large first) effects across groups. Each scenario is listed in Table 4 in the main article.  
 
 



eFigure 7. Monte Carlo simulation results for Scenario 3 increasing the number of 
simulation runs to 1000 
 

 
 
Abbreviations: TWFE: Two-way fixed effects; CS: Callaway-Sant’Anna; BJS: Borusyak-Jaravel-
Spiess; SA: Sun-Abraham; JW: Wooldridge 
Note: Scenarios 3a-3c have constant effects, and Scenarios 3d-3e have dynamic (linear trend) 
effects. Scenarios 3a and 3d have homogeneous effects across groups; Scenarios 3b and 3e have 
heterogeneous (at random) effects across groups; and Scenarios 3c and 3f have heterogeneous 
(large first) effects across groups. Each scenario is listed in Table 4 in the main article.  



eTable 1. Monte Carlo simulation estimates of the ATT increasing the number of units to 50  

  
No PTA violation  

(Scenarios 1 and 2) 
 No PTA violation  

(Scenario 3) 
Scenario Methods Bias (%) RMSE  Bias (%) RMSE 
Constant, homogeneous effects         Scenario 1a                                      Scenario 3a   
 TWFE 0.09 0.09  -7.92 0.57 
 CS 0.39 0.31  -19.66 1.10 
 BJS 0.14 0.13  -23.05 1.19 
 SA -0.03 0.31  -19.86 1.11 
 JW 0.07 0.13  -23.07 1.18 
Constant, random HTE                       Scenario 1b                                      Scenario 3b   
 TWFE 1.18 0.81  -6.31 0.99 
 CS 1.09 0.88  -16.14 1.42 
 BJS 0.45 0.33  -19.19 1.22 
 SA 0.48 0.39  -16.59 1.11 
 JW 0.47 0.27  -19.07 1.17 
Constant, large-first HTE                    Scenario 1c                                      Scenario 3c   
 TWFE -9.72 0.77  -15.17 1.05 
 CS 4.40 0.77  -10.88 0.94 
 BJS 0.20 0.26  -16.84 1.21 
 SA 0.32 0.32  -14.63 1.12 
 JW 0.20 0.23  -17.43 1.21 
Dynamic, homogeneous HTE             Scenario 2a                                      Scenario 3d   
 TWFE -66.12 1.74  -94.90 1.94 
 CS 0.60 0.39  -58.99 1.07 
 BJS -5.57 0.32  -76.25 1.29 
 SA -5.37 0.42  -63.08 1.19 
 JW -5.72 0.29  -77.19 1.28 
Dynamic, random HTE                       Scenario 2b                                      Scenario 3e    
 TWFE -65.23 1.78  -89.86 2.01 
 CS -1.03 0.57  -49.70 1.10 
 BJS -5.05 0.35  -65.76 1.32 
 SA -6.12 0.41  -55.65 1.20 
 JW -5.05 0.33  -66.85 1.33 
Dynamic, large-first HTE                     Scenario 2c                                      Scenario 3f   
 TWFE -75.84 2.22  -94.76 2.43 
 CS 4.05 0.54  -37.75 1.02 
 BJS -5.55 0.39  -56.01 1.38 
 SA -5.62 0.46  -47.96 1.28 
  JW -5.61 0.35  -56.00 1.36 

Abbreviations: TWFE: Two-way fixed effects; CS: Callaway-Sant’Anna; BJS: Borusyak-Jaravel-
Spiess; SA: Sun-Abraham; JW: Wooldridge 
Note: Each scenario is listed in Table 4.  



eTable 2. Monte Carlo simulation estimates of the ATT increasing the number of time periods to 
60  
    No PTA violation  PTA violation 
   (Scenarios 1 and 2)  (Scenario 3)  
Scenario Methods Bias (%) RMSE  Bias (%) RMSE 
Constant, homogeneous effects         Scenario 1a                                      Scenario 3a   
 TWFE -0.04 0.09  -9.30 0.93 
 CS 0.19 0.42  -36.21 2.02 
 BJS -0.11 0.13  -38.93 2.03 
 SA 0.25 0.35  -33.84 1.89 
 JW 0.08 0.16  -38.41 1.98 
Constant, random HTE                       Scenario 1b                                      Scenario 3b   
 TWFE 2.18 0.83  -6.73 1.22 
 CS -1.37 1.50  -31.55 2.51 
 BJS 0.30 0.29  -32.26 2.04 
 SA 1.06 0.43  -26.19 1.79 
 JW 0.32 0.26  -32.65 1.99 
Constant, large-first HTE                    Scenario 1c                                      Scenario 3c   
 TWFE -10.81 0.83  -17.78 1.33 
 CS 10.79 1.16  -17.04 1.50 
 BJS 1.21 0.28  -27.79 1.99 
 SA 1.51 0.43  -22.89 1.77 
 JW 1.29 0.27  -28.66 1.97 
Dynamic, homogeneous HTE             Scenario 2a                                      Scenario 3d   
 TWFE -73.96 1.92  -109.45 2.20 
 CS 0.93 0.59  -114.85 2.00 
 BJS -6.26 0.33  -131.35 2.20 
 SA -7.99 0.48  -111.88 1.99 
 JW -6.50 0.34  -134.46 2.18 
Dynamic, random HTE                       Scenario 2b                                      Scenario 3e    
 TWFE -73.46 1.84  -104.68 2.17 
 CS 1.68 0.75  -91.55 2.03 
 BJS -7.54 0.36  -113.75 2.23 
 SA -7.54 0.49  -95.57 2.02 
 JW -7.62 0.34  -113.13 2.15 
Dynamic, large-first HTE                     Scenario 2c                                      Scenario 3f   
 TWFE -85.75 2.36  -111.24 2.64 
 CS 9.25 0.76  -72.06 1.76 
 BJS -5.87 0.34  -94.31 2.18 
 SA -6.27 0.49  -79.94 1.99 
  JW -5.87 0.33   -96.68 2.17 

Abbreviations: TWFE: Two-way fixed effects; CS: Callaway-Sant’Anna; BJS: Borusyak-Jaravel-
Spiess; SA: Sun-Abraham; JW: Wooldridge 
Note: Each scenario is listed in Table 4.  
 



eTable 3. Monte Carlo simulation estimates of the ATT increasing the simulation runs to 1000 
    No PTA violation  PTA violation  
   (Scenarios 1 and 2)  (Scenario 3)  
Scenario Methods Bias (%) RMSE   Bias (%) RMSE 
Constant, homogeneous effects         Scenario 1a                                      Scenario 3a   
 TWFE 0.13 0.12  -6.82 0.61 
 CS -0.33 0.43  -18.68 1.24 
 BJS 0.17 0.16  -21.02 1.18 
 SA 0.08 0.35  -17.38 1.11 
 JW 0.22 0.18  -21.37 1.16 
Constant, random HTE                       Scenario 1b                                      Scenario 3b   
 TWFE 0.40 0.77  -4.82 1.00 
 CS 0.73 1.20  -18.12 1.73 
 BJS -0.01 0.34  -19.52 1.25 
 SA 0.51 0.44  -16.28 1.16 
 JW -0.01 0.28  -20.24 1.24 
Constant, large-first HTE                    Scenario 1c                                      Scenario 3c   
 TWFE -9.64 0.78  -15.05 1.07 
 CS 5.24 0.86  -8.18 0.97 
 BJS 0.17 0.32  -16.85 1.25 
 SA 0.03 0.43  -13.69 1.13 
 JW 0.16 0.29  -16.95 1.20 
Dynamic, homogeneous HTE             Scenario 2a                                      Scenario 3d   
 TWFE -68.08 1.77  -92.32 2.01 
 CS 0.29 0.60  -56.70 1.15 
 BJS -5.65 0.35  -72.87 1.34 
 SA -4.46 0.50  -61.83 1.28 
 JW -5.60 0.34  -72.99 1.31 
Dynamic, random HTE                       Scenario 2b                                      Scenario 3e    
 TWFE -67.77 1.82  -88.34 1.94 
 CS -0.55 0.68  -51.29 1.21 
 BJS -5.15 0.36  -66.74 1.34 
 SA -5.33 0.48  -55.83 1.26 
 JW -5.07 0.34  -66.81 1.31 
Dynamic, large-first HTE                     Scenario 2c                                      Scenario 3f   
 TWFE -76.82 2.24  -94.57 2.44 
 CS 3.77 0.69  -38.85 1.11 
 BJS -5.51 0.41  -56.08 1.40 
 SA -6.09 0.51  -48.86 1.35 
  JW -5.62 0.37   -56.50 1.37 

Abbreviations: TWFE: Two-way fixed effects; CS: Callaway-Sant’Anna; BJS: Borusyak-Jaravel-
Spiess; SA: Sun-Abraham; JW: Wooldridge 
Note: Each scenario is listed in Table 4.  
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